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Abstract

A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor
and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge
was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores
throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The
flexible porous structure helped the composite to show high performance in pressure detection with fast response
and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/
sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible
approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.
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Background
Nowadays, varieties of sensors, including pressure sensor
[1, 2], strain sensor [3, 4], gas sensor [5–7], temperature
sensor [8, 9], and displacement sensor [10], have been
extensively explored. Particularly, with the popularity of
artificial intelligence technology, low-cost flexible sensors
are highly desirable for the fabrication of portable, wearable,
and foldable devices. However, it is usually expensive and
complicated to design flexible sensors with elaborate
structures [11, 12]. Thus, an efficient and low-cost approach
is highly required to fulfill flexible and portable sensors.
Sponge, as a three-dimensional (3D) ubiquitous material,

has aroused extensive concerns due to its unique perform-
ance, such as high elasticity, high specific surface area, low
density, and low-cost manufacturing. Therefore, conductive
sponges are considered as excellent materials to assemble
sensors and devices, such as graphene-polyurethane sponge

as pressure sensor [13], superhydrophobic polyaniline
(PANI) sponge as oil absorbent [14], and graphene
platelets/PANI sponge [15] as supercapacitors. Herein, be-
sides carbon series semiconductor materials, conducting
polymer is often used as functional element of devices due
to their good electrical conductivity, physical robustness,
and large surface area [3, 16, 17]. As one of conducting
polymers, for the aim of fabricating flexible and low-cost
sensors, PANI has already been used as sensing material in
various application fields, such as supercapacitors [18, 19],
sensors [3, 20], electrodes [21, 22], microwave absorption
[23], and electromagnetic shielding [24]. In general, there
are two main methods to prepare PANI composites: doping
and in situ polymerization [3, 25–27]. Normally, in situ
polymerization provides more feasible preparation and
remarkable effectiveness.
Generally, for pressure sensors, according to the

sensing mechanisms, there mainly exist piezoelectric
sensors [28, 29], capacitive sensors [30], transistor sen-
sors [2, 31], and piezoresistive sensors [13, 32, 33].
Piezoresistive sensor, as a typical pressure sensor, which
transduces pressure to resistance signal, has been widely
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used due to outstanding advantages, such as simple
principle, convenient signal collection, low cost, and
simple preparation [13, 28, 32, 33]. Additionally, for gas
sensor, the alkali gas sensing mechanism of PANI can be
attributed to the conducting mechanism [20]. As we
know, the charge carriers of PANI are polarons, and the
conjugated molecule chain in PANI will become more
conductive after the doping of proton. When the alkaline
gas molecules are absorbed by the nanostructured PANI,
this will result in a decrease of the charge carriers and
increase of the electrical resistance of PANI.
In this study, we used in situ polymerization method

to prepare multi-hierarchical porous PANI/sponge com-
posite for piezoresistive sensor and adjustable sensitivity
gas sensor. As a porous scaffold, the sponge provided
sufficient surface for the growth of nanostructured
PANI. The sensor with abundant pores and PANI nano-
structures showed excellent performances in pressure
sensitivity with fast response to diverse pressure and re-
lease. The mechanism of piezoresistive sensing could be
attributed to the resistance change by the contact
variation of the conductive porous structure. Besides,
based on the conducting mechanism of PANI and the
piezoresistive sensing mechanism mentioned above, the
potential application of the composite for adjustable
sensitivity gas sensor has also been investigated. The re-
sults indicate that this work provides an effective and
low-cost approach to fabricate porous conductive com-
posite and device.

Methods
Materials
Ammonium persulfate (APS, Mw = 228.20), 5-sulfosalicylic
acid (SSA, Mw = 254.22), and ammonia solution were
supplied by Sinopharm Chemical Reagent Co., Ltd.
(Shanghai China). The aniline (Mw = 93.13) was pur-
chased from Chemical Reagent (Tianjin China). The
sponge was commercial grade polyurethane sponge
(Brand: Domaxe, China).

Preparation of PANI/Sponge Composite
In situ polymerization method was used to prepare
PANI/sponge composite. Briefly speaking, 2.5422 g of

SSA and 1.8626 g of aniline were well dispersed in 50 ml
of deionized (DI) water with magnetic stirring for
20 min. Then, the sponge, which was regarded as
scaffold, was submerged in the prepared solution. After
that, APS solution (4.5640 g of APS in 50 ml of DI
water) was slowly added to the above solution to make
sure the uniform and intensive mixing. After 24 h’ stand-
ing in refrigerator at 2 °C, the sponge was taken out
from the final solution and washed with DI water to re-
move the impurities. Drying at room temperature for
48 h, the PANI/sponge composite was finally obtained.
As seen in Fig. 1, the sample (sponge) underwent a color
change from yellow to deep green (PANI/sponge). The
shape and volume of final PANI/sponge were unchanged
because of the strength and toughness of scaffold; 35%
of PANI mass load was evaluated by contrasting the
weight of sponge and PANI/sponge composite.

Sensor Assembly
As shown in Fig. 2, a simple piezoresistive sensor was
assembled by sandwiching PANI/sponge composite be-
tween two copper electrodes (copper sheet), and the size
of the composite was 2 × 2 × 2 cm3. Two copper wires
were fixed on the copper electrode by soldering tin. The
copper wires were used to connect with electrical
property measurement system, which could response to
various pressures applied on the sensor.

Characterization
The sponge and PANI/sponge composite were charac-
terized by a scanning electron microscope (SEM, JEOL,
JSM-7500F) and a Micro-Roman spectroscopy system
(Renishaw inVia Plus, 50 mW DPSS laser at 532 nm).
The electrical properties were measured by a Keithley
6487 high-resistance meter system.

Results and Discussion
Morphological and Structural Properties
Figure 3a, c and Fig. 3b, d show SEM images of pristine
sponge and in situ polymerized sponge under different
magnifications, respectively. It can be seen that the in-
terconnected porous structure provides sufficient surface
for the growth of PANI nanobranches. The composite

Fig. 1 The process of preparing PANI/sponge composite. a A commercial grade polyurethane sponge was selected. b In situ polymerization of
PANI on the sponge. c The sample was washed with DI water and dried at room temperature to obtain the final PANI/sponge composite
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after polymerization exhibits rough surface while the
pristine sponge is smooth, which indicates that PANI
micro/nanostructures have grown. Under high magnifi-
cation, the PANI nanobranches could be seen clearly on
the surface of sponge. During the in situ polymerization
process, due to intrinsic non-uniformity of PANI, some
bumps are generated in PANI membrane [27], and then,
PANI nanobranches could in situ grow on the sponge
structure with adequate adhesion by interfacial compati-
bility. The nanostructured PANI coating helps the com-
posite to improve its electrical conductivity. Meanwhile,
the special nanobranches make the composite a bigger
specific surface area, so that the composite may display
excellent properties in some contact-dependent applica-
tions. Moreover, this PANI/sponge composite has an in-
teresting multi-hierarchical porous structure, which is

comprised of the sponge with micropores (Fig. 3b) and
the PANI branches with nano-pores (Fig. 3d).

Raman Spectra
The Raman spectra of the pristine sponge and PANI/
sponge composite are depicted in Fig. 4. According to
the characteristic peak positions of PANI/sponge
composite, the spectra exhibit most of the characteristics
of PANI. The band around 1486, 1407, 1216, and 1163 cm−1

are assigned to quinondiimine. Band 1486 cm−1 corresponds
to C=C and C=N allied stretching vibration, band 1407 and
1216 cm−1 correspond to C–N stretching vibration, and
band 1163 cm−1 corresponds to C–N bending vibration,
respectively. Besides, the band at 1329 cm−1 represents C–N
stretching vibration of phenylenediamine. The band around
1588 cm−1 is assigned to C–C stretching vibration

Fig. 2 Schematic of the preparation of PANI/sponge sensor

Fig. 3 SEM images of a, c pristine sponge and b, d sponge after in situ polymerization

He et al. Nanoscale Research Letters  (2017) 12:476 Page 3 of 8



(corresponding region is from 1550 to 1650 cm−1). The re-
sults confirm the successful polymerization and the existence
of PANI on sponge.

Pressure Sensitivity Test
To demonstrate pressure sensitivity, the resistance vari-
ation of the PANI/sponge composite with pressure applied
on surface was explored. The composite with 3D size of
2 × 2 × 2 cm3 was sandwiched by two copper electrodes
(as shown in Fig. 2), and the electricity was recorded with
the applying of pressure on the two electrodes.
Firstly, a simple exploration is carried out by a cyclic

pressure-removed response (Fig. 5) of the PANI/sponge
sensor at a fixed bias of 5 V, and there is about 2-mm
compressive deformation forced by finger. As shown in
Fig. 5, the current reaches to peak value fast with the ap-
plying of pressure, and as release, it could recover to
initial value immediately and stays in a good stability.
Meanwhile, the sensibility and recoverability are not af-
fected by multiple press-release cycles. On the other
hand, the peaks are not uniform, which may be caused

by the small fluctuations of compression deformations
for the press of human finger is not absolutely uniform.
To systematically demonstrate the sensitivity of PANI/
sponge to different pressures, the electronic resistance
variation ratios calculated on the basis of measured data
are shown in Fig. 6 (a). Here, ΔR/R0 = (R0 − R)/R0,
where R0 and R denote the resistance in release and
pressure condition. It can be seen that the relative
change of resistance is increased when the PANI/sponge
is pressed from 0 to 13 kPa. Furthermore, from the slope
of curve A, the pressure sensitivity S (S = δ(ΔR/R0)/δP,
where P denote the applied pressure) [13], which is an
important index to reflect the performance of a pressure
sensor, could be calculated to be about 8.0 (0–8 kPa)
and about 54.5 (8–13 kPa). We confirm that the sensing
mechanism of PANI/sponge composite is the change of
inner microporous structure. Here, for easily operation,
compression distance is proposed to characterize the
strength of the applied pressures, and the corresponding
relationship of pressure and compression deformation is
illustrated in Fig. 6 (b).
To demonstrate the piezoresistive sensing mechanism

of the conductive PANI/sponge composite, a simple
schematic diagram (Fig. 7) is depicted to simulate the
microporous contact change of the sponge structure.
With the increase of pressure, the micropores get
squashed and contact each other more closely. Particu-
larly, the microporous structure could recover to previ-
ous condition with the release of pressure. Herein, the
resistance gets smaller with the increase of pressure and
could return to initial value after release. Thus, the
inner-contact variation of the conductive porous
structure results in the resistance change, which gener-
ates the piezoresistive sensitivity. To illustrate the con-
tact variation visually, SEM images of microporous
structure under different degrees of pressure are shown
in Fig. 8a–d. Besides, there is no PANI desquamation in

Fig. 4 Raman spectrum of pristine sponge and sponge after in
situ polymerization

Fig. 5 Cyclic pressure-removed response of the PANI/sponge with
about 2-mm compressive deformation forced by finger

Fig. 6 A Pressure-response curve of the PANI/sponge sensor and B the
corresponding relationship curve of pressure and compression deformation
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testing, as demonstrated in Fig. 8e (SEM images of the
composite after multiple pressures), the PANI micro/
nanostructures could maintain adequate adhesion to the
sponge after cyclic testing.
A pressure sensor should be equipped with capabil-

ities of good stability and recoverability. For the pur-
pose of demonstrating the stability and recoverability
characteristics, the current responses to different
pressures under a fixed bias of 5 V are tested. As ex-
hibited in Fig. 9a, the current almost displays a liner
response to compression deformation from 0 to
12 mm and back to 0 mm; meanwhile, it holds a fast
response and a good stability to the ascending and
descending pressures, besides, there only exists a little
deviation between a continuous ascending and de-
scending test. However, there arises a clear difference
between 250~300 s and 320~360 s. We infer that this
deviation may be caused by two main reasons. One is
that there may be a hysteresis quality when the

composite is suddenly recovered from the biggest de-
formation. The other is the possible operating error
in testing, which leads to a bigger compression
distance than that in 250~300 s. To characterize the
stability and recoverability more directly, Fig. 9b dem-
onstrates the current responses to loading and
unloading pressure with different intensities. From the
circle response curves, the composite responses to the
pressures immediately, and the current could fully
recover to the initial value within 35 s after with-
drawing the pressure. It can be seen from Fig. 9 that
the current increases with increasing pressure and
decreases with decreasing pressure, which is consist-
ent with the piezoresistive sensing mechanism
illustrated in the above. These results indicate that
the flexible and sensitive PANI/sponge composite is
potentially applicable in pressure sensors, which
may be used in low-cost artificial skin and smart
clothing [13, 34, 1].

Fig. 7 Pressure-sensing schematic of PANI/sponge composite

Fig. 8 SEM images of microporous structure of PANI/sponge composite under different pressures with approximate compression ratio of a 0%, b
20%, c 40%, and d 60%. e SEM images of the composite after multiple pressures under different magnifications
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Application in Finger Bending-Release Detection
Nowadays, low-cost pressure sensors with high sensi-
tivity and proper flexibility are highly desirable in
portable and wearable devices. Here, the simple
PANI/sponge sensor (2 × 1 × 0.5 cm3) is fixed on a
rubber glove to the joint of forefinger. The current
response is recorded while the tester performs finger
bend-release operations at the fixed bias of 5 V. Sev-
eral cycle current responses are shown in Fig. 10. The
finger bends and releases rapidly in this process. It is
noticed that the current increases sharply when the
finger is suddenly bent. When the finger is released,
the current exhibits a significant reduction and
recovers to its original value. The degrees of every
finger bending are not exactly same, so the current
peaks at each bend point have a little difference. The
sensibility and repeatability of current responses
indicate that the sensor is reliable and capable for
flexible detection devices in some low-cost portable
and wearable devices.

Application in Adjustable Sensitivity Gas Sensor
PANI composites have been widely explored as gas
sensing materials for their unique conducting mechan-
ism. However, the related reports on PANI-based gas
sensor mainly focus on a fixed or a single sensitivity.
Herein, based on the flexible porous structure and the
reaction of NH3 molecules with proton-doped PANI, we
investigate the potential application of PANI/sponge
composite on adjustable sensitivity NH3 gas sensor.
Through controlling the inner-contact density of the
conductive porous structure (as shown in Fig. 8), the
diffusion volume and rate of air inflow can be adjusted
to achieve the purpose of adjustable sensitivity. The
sandwiched PANI/sponge composite sensor under
different pressures was put in a closed box (with size of
30 × 30 × 30 cm3) and contacted with the outside
Keithley 6487 high-resistance meter system through cop-
per wire. NH3 was produced by the natural volatilization
of 1 ml ammonia solution added in box. Figure 11 exhibits
the real-time PANI/sponge composite response to indoor

Fig. 9 Stability and recoverability test of the PANI/sponge sensor. a Current responses to different pressures with compressive deformation from
0 to 12 mm and back to 0 mm. b Current responses to loading and unloading pressure with different intensities

Fig. 10 Current responses of finger bending-release motion detection
at a fixed bias of 5 V

Fig. 11 NH3 sensing properties of the PANI/sponge composite under
different pressures
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air and NH3, which indicates that the compression degree
effects on the sensitivity of NH3 detection. From the
current-time (I-t) curves, it can be seen that the composite
resistances with the diffusion of NH3 are obviously higher
than that in indoor air. Besides, it is obvious that as the
increase of compression degree, the composite resistance
and the response time to steady state are both increased
gradually under the same NH3 atmosphere, which
indicates that the sensitivity could be adjusted by the inner
contact porosity. As the increase of pressure, the inner-
contact density of the conductive porous structure is
increased, which leads to a decrease of both the diffusion
volume and diffusion rate of NH3 inflow; therefore, under
the same concentration, the response time to NH3 is
extended. Moreover, the initial current increases with the
increase of pressure due to the decreased inflow rate of
NH3. On the other hand, because the content of NH3 in
the closed box is the same, the current of the composite
could reach a small value eventually, namely, dedoping of
PANI by NH3 would reach a similar level.

Conclusions
In conclusion, we report a facile method via in situ
polymerization to prepare PANI/sponge composite
which could be used in good performance pressure
sensor and adjustable sensitivity gas sensor. The flex-
ible interconnected porous structure helped the com-
posite to show good sensitivity and recoverability to
pressure. Besides, the flexible sensor based on PANI/
sponge showed good performance in finger bending
detection and NH3 detection with adjustable sensitiv-
ity. This work may provide a feasible approach to
fabricate efficient portable and wearable devices with
the advantages of low cost, facile preparation, and
easy signal collection.
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